ON A CONJECTURE OF CLEMENS ON RATIONAL CURVES ON HYPERSURFACES

CLAIRE VOISIN

0. Introduction

In [2], H. Clemens proved the following theorem:

0.1 Theorem. Let $X \subset \mathbb{P}^n$ be a general hypersurface of degree $d \geq 2n-1$. Then X contains no rational curve.

In [3],[4] Ein generalized Clemens theorem in two directions; he considered a smooth projective variety M of dimension n, instead of \mathbb{P}^n (which is a mild generalization since any such M can be projected to \mathbb{P}^n), and general complete intersections $X \subset M$ of type (d_1, \ldots, d_k) and proved:

0.2 Theorem. If $d_1 + \ldots + d_k \geq 2n - k - l + 1$, any subvariety Y of X of dimension l has a desingularisation \tilde{Y} which has an effective canonical bundle; if the inequality is strict, the sections of $K_{\tilde{Y}}$ separate generic points of \tilde{Y} .

In the case of divisors $Y \subset X$, this result has been improved by Xu

[11],[12], who proved:

0.3 Theorem. Let $Y \subset X$ be a divisor, \tilde{Y} a desingularization of Y, then $p_q(\tilde{Y}) \geq n-1$ if $\sum d_i \geq n+2$.

In [11], he gave more precise estimates for the minimal genus of a curve in a general surface in \mathbb{P}^3 .

Now these results are not optimal, excepted in the case of divisors. In fact we will prove in the case of hypersurfaces the following improvement of Clemens and Ein's results:

0.4 Theorem. (See 2.10.) Let $X \subset \mathbb{P}^n$ be a general hypersurface of degree $d \geq 2n - l - 1$, $1 \leq l \leq n - 3$; then any subvariety Y of X of dimension l has a desingularization \tilde{Y} with an effective canonical bundle; if the inequality is strict, the sections of $K_{\tilde{Y}}$ separate generic points of Y.

Received April 7, 1995.

In particular, this proves that general hypersurfaces of degree $d \ge 2n-2, \ n \ge 4$ do not contain rational curves, which was conjectured by Clemens. This result is now optimal since hypersurfaces of degree $\le 2n-3$ contain lines. Similarly, general hypersurfaces of degree $d \ge 2n-3$ do not contain a surface covered by rational curves, for $n \ge 5$, and this cannot be improved since hypersurfaces of degree $\le 2n-4$ contain a positive dimensional family of lines. The case n=4, d=2n-3=5 is Clemens conjecture on the finiteness of rational curves of fixed degree in a general quintic threefold and is not accessible by our method.

- **0.5.** In the first section, we will prove a very simple proposition (1.1) concerning the global generation of the bundle $T\mathcal{X}(1)_{|X}$, where \mathcal{X} is the universal family of complete intersections, $\mathcal{X} \subset \mathbb{P}^n \times \Pi_i H^0(\mathcal{O}_{\mathbb{P}^n}(d_i))^0$, where the last factor denotes the open set of $\Pi_i H^0(\mathcal{O}_{\mathbb{P}^n}(d_i))$ parametrizing smooth complete intersections, and $X \subset \mathcal{X}$ is a special member of the family. We will show how the theorems of Clemens and Ein are deduced from this. Notice that this is only a formal simplification of the proof of Ein, since the principle of the proof is certainly the same. However, it allows to estimate the codimension of the sublocus of $\Pi_i H^0(\mathcal{O}_{\mathbb{P}^n}(d_i))^0$ where the statement fails to be true. We also give an improvement of Xu's theorem using a refinement of Proposition 1.1. We finally recall from [9], the following kind of applications:
- **0.6 Theorem.** If $\sum_i d_i > 2n k + 1$, and X is general, no two points of X are rationally equivalent.
- **0.7.** The second section is devoted to the improvement of these results in the case of hypersurfaces. The main technical point here is Proposition 2.2, which concerns sections of the bundle $\bigwedge^2 T\mathcal{X}(1)_{|X}$. In the above mentioned papers the authors used only sections of $\bigwedge^2 T\mathcal{X}(2)_{|X}$, (which are easily obtained using the wedge products of sections of $T\mathcal{X}(1)_{|X}$), which explains why their results can be improved (by 1).
- 1. We will begin this section with the proof of the following proposition 1.1; let $S^{d_i} := H^0(\mathcal{O}_{\mathbb{P}^n}(d_i))$, $d_i \geq 2$ and let $\mathcal{X} \subset \mathbb{P}^n \times \Pi_i S^{d_i}{}^0$ be the universal complete intersection; for $t = (t_1, \ldots, t_k) \in \Pi_i S^{d_i}{}^0$, let $X_t := pr_2^{-1}(t) \subset \mathcal{X}$ be the complete intersection parametrized by t. We assume that dim $X_t \geq 2$, and that $H^0(T_{X_t}(1)) = \{0\}$, which is certainly true if $K_{X_t} \geq \mathcal{O}_{X_t}(1)$ (with the first assumption), so is not restrictive since this is the only case that we will consider for applications. Then we have:
- **1.1 Proposition.** The bundle $T\mathcal{X}(1)_{|X_t}$ is generated by global sections.
 - Proof. Consider the exact sequence of tangent bundles:

1.1.1. $0 \to T_{X_t}(1) \to T\mathcal{X}(1)_{|X_t} \to (\Pi_i S^{d_i}) \otimes \mathcal{O}_{X_t}(1) \to 0.$

From $h^0(T_{X_t}(1)) = 0$, we deduce:

1.1.2. $H^0(T\mathcal{X}(1)|_{X_t}) = \text{Ker } \mu, \text{ where } \mu: \Pi_i S^{d_i} \otimes S^1 \to H^1(T_{X_t}(1))$ is the coboundary map induced by 1.1.1.

Now $X_t \subset \mathbb{P}^n$ is defined by $t_1 = \ldots = t_k = 0$, so we have the exact sequence:

1.1.3.
$$0 \to T_{X_t} \to T\mathbb{P}^n_{|X_t} \stackrel{\alpha}{\to} \Pi_i \mathcal{O}_{X_t}(d_i) \to 0$$
,

where $\alpha(X_l \partial/\partial X_i) = (X_l \partial t_1/\partial X_j)_{|X_l}, \dots, X_l \partial t_k \partial X_j)_{|X_l}$. 1.1.3 gives then an isomorphism:

1.1.4.

$$\operatorname{Ker}(H^{1}(T_{X_{t}}(1)) \to H^{1}(T\mathbb{P}^{n}(1)_{|X_{t}})) \\ \cong \prod_{i} H^{0}(\mathcal{O}_{X_{t}}(d_{i}+1))/\alpha((H^{0}(T\mathbb{P}^{n}_{|X_{t}})).$$

Now using the map pr_{1*} between 1.1.1 and 1.1.3:

1.1.5.

we see immediately that the map μ of 1.1.2 takes its value in $\operatorname{Ker}(H^1(T_{X_t}(1)) \to H^1(T\mathbb{P}^n(1)_{|X_t}))$, and via the isomorphism of 1.1.4, is simply the map:

- **1.1.6.** $\mu: (\Pi_i S^{d_i}) \otimes S^1 \to \Pi_i H^0(\mathcal{O}_{X_t}(d_i+1))/\alpha(H^0(T\mathbb{P}^n(1)_{|X_t}))$ obtained by composition of the product: $S^{d_i} \otimes S^1 \to S^{d_i+1}$, the restriction to X_t , and the projection modulo $\text{Im}(\alpha)$.
- 1.1.7. Next let $x \in X_t$ be any point; tensoring everything with \mathcal{I}_x we get similarly isomorphisms:

1.1.8.

$$\begin{split} \operatorname{Ker}(H^1(T_{X_t}(1) \otimes \mathcal{I}_x) & \to H^1(T\mathbb{P}^n(1)_{|X_t} \otimes \mathcal{I}_x) \\ & \cong \Pi_i H^0(\mathcal{O}_{X_t}(d_i+1) \otimes \mathcal{I}_x) / \operatorname{Im}(\alpha_x), \end{split}$$

where $\alpha_x: H^0(T\mathbb{P}^n(1)_{|X_t} \otimes \mathcal{I}_x) \to \Pi_i H^0(\mathcal{O}_{X_t}(d_i+1) \otimes \mathcal{I}_x)$ is the map induced by α in 1.1.3, and

1.1.9. $H^0(T\mathcal{X}(1)|_{X_t}\otimes \mathcal{I}_x)\cong \operatorname{Ker} \mu_x,$ where $\mu_x: (\Pi_i S^{d_i}) \otimes S^1_x \to \Pi_i H^0(\mathcal{O}_{X_i}(d_i+1) \otimes \mathcal{I}_x) / \operatorname{Im}(\alpha_x)$ is the multiplication followed by restriction to X_t and projection mod. Im(α_x) as in 1.1.6 (Here $S_x^1 := H^0(\mathcal{O}_{X_t}(1) \otimes \mathcal{I}_x)$).

Now the proof of 1.1 is finished with the obvious observation that μ and μ_x are surjective: indeed, the map given by the inclusion $H^1(T\mathbb{P}^n(1)_{|X_t}\otimes \mathcal{I}_x)\to H^1(T\mathbb{P}^n(1)_{|X_t})$ is injective since $T\mathbb{P}^n(1)_{|X_t}$ is generated by its sections. From $H^0(T_{X_t}(1)) = 0$, we have the exact sequence:

1.1.10. $0 \to H^0(T_{X_t|x}) \to H^1(T_{X_t}(1) \otimes \mathcal{I}_x) \to H^1(T_{X_t}(1)) \to 0$, which induces an exact sequence:

1.1.11.

$$0 \to H^0(T_{X_t|_X}) \to (\operatorname{Ker}(H^1(T_{X_t}(1) \otimes \mathcal{I}_x) \to H^1(T\mathbb{P}^n(1)_{|X_t} \otimes \mathcal{I}_x)) \\ \to \operatorname{Ker}(H^1(T_{X_t}(1)) \to H^1(T\mathbb{P}^n(1)_{|X_t})) \to 0,$$

that is:

1.1.12.
$$0 \to H^0(T_{X_t|x}) \to \operatorname{Im}(\mu_x) \to \operatorname{Im}(\mu).$$

It then follows that $\operatorname{Ker}(\mu_x) \subset \operatorname{Ker}(\mu)$ has codimension equal to: $\dim(\bigoplus_i S^{d_i}) + h^0(TX_{t|x}) = \operatorname{rank}(T\mathcal{X}(1)_{|x})$. By the isomorphisms of 1.1.2, 1.1.6, 1.1.9, we conclude that $H^0(T\mathcal{X}(1)_{|X_t} \otimes \mathcal{I}_x) \subset H^0(T\mathcal{X}(1)_{|X_t})$ has codimension equal to the rank of $T\mathcal{X}$, which means that $T\mathcal{X}(1)_{|X_t}$ is globally generated at x.

Now Proposition 1.1 implies

1.2 Corollary. For any $l \geq 0$ the bundle $\bigwedge^l TX \otimes \mathcal{O}_{X_t}(l)$ is generated by global sections, and the bundle $\bigwedge^l TX \otimes \mathcal{O}_{X_t}(l+1)$ is very ample (in the sense that its global sections restrict surjectively to its sections over any 0-dimensional subscheme of length two of X_t).

Now $T\mathcal{X}_{|X_t}$ has determinant equal to $K_{X_t} \cong \mathcal{O}_{X_t}(\sum_i d_i - n - 1)$, so we have:

- **1.2.1.** $\bigwedge^l T\mathcal{X} \otimes \mathcal{O}_{X_t}(l) \cong \bigwedge^{N+n-k-l} \Omega \mathcal{X}_{|X_t} \otimes \mathcal{O}_{X_t}(l-\sum_i d_i+n+1),$ where $N = \dim(\bigoplus_i S^{d_i})$, so $N+n-k = \dim \mathcal{X}$. Thus we conclude:
- 1.3 Corollary. $\Omega_{\mathcal{X}}^{N+n-k-l}$ is generated by global sections when $l-\sum_i d_i+n+1\leq 0$, and is very ample when this inequality is strict.

This gives immediately the following refinement 1.4 of Clemens and Ein's results (0.2): Let $\mathcal{M} \subset \Pi_i S^{d_i 0}$ be a subvariety, and let $\tilde{\mathcal{M}} \stackrel{\pi}{\to} \mathcal{M}$ be an étale map; let $\mathcal{Y} \subset \mathcal{X}_{\tilde{\mathcal{M}}}$ be a subvariety of the family obtained by base change to $\tilde{\mathcal{M}}$; we assume that $pr_2: \mathcal{Y} \to \tilde{\mathcal{M}}$ is dominant of generic fiber dimension l. Then we have:

1.4 Theorem. If $\sum_i d_i \geq 2n - k + 1 - l + \operatorname{codim} \mathcal{M}$, then any desingularization \tilde{Y}_t of the generic fiber Y_t of $pr_2: \mathcal{Y} \to \tilde{\mathcal{M}}$ has an effective canonical bundle. If the inequality is strict, then the sections of $K_{\tilde{Y}_t}$ separate generic points of \tilde{Y}_t .

Proof. We have $\dim \mathcal{Y} = N + l - \operatorname{codim} \mathcal{M}$; by 1.3, if $\sum_i d_i \geq 2n - k + 1 - l + \operatorname{codim} \mathcal{M}$, then the bundle $\Omega^{\dim \mathcal{Y}}_{\mathcal{X}_{\tilde{\mathcal{M}}}}$ is generated by the global sections, for all $m \in \tilde{\mathcal{M}}$ such that \mathcal{M} is smooth at $\pi(m)$, since the map $\tilde{\mathcal{M}} \to \mathcal{M}$ is étale. Let $\tilde{\mathcal{Y}}$ be a desingularization of \mathcal{Y} , and $j: \tilde{\mathcal{Y}} \to \mathcal{X}_{\tilde{\mathcal{M}}}$ be the natural induced map; then j is generically

an immersion. So it follows that $\Omega^{\dim \mathcal{Y}}_{\tilde{\mathcal{Y}}}$ has a nonzero section, for generic $m \in \tilde{\mathcal{M}}$. Since for a smooth fiber \tilde{Y}_m , one has an isomorphism: $\Omega^{\dim \mathcal{Y}}_{\tilde{\mathcal{Y}}} \cong K_{\tilde{Y}_m}$, we have proved that the canonical bundle $K_{\tilde{Y}_m}$ is effective, for generic $m \in \tilde{\mathcal{M}}$, as we wanted. Similarly, if the inequality is strict, then again by 1.3, the bundle $\Omega^{\dim \mathcal{Y}}_{\mathcal{X}}|_{X_m}$ is very ample, for any $m \in \tilde{\mathcal{M}}$, so for a generic point $m \in \tilde{\mathcal{M}}$, satisfying the conditions that j is an immersion generically along \tilde{Y}_m and that \tilde{Y}_m is smooth, we get that the sections of $\Omega^{\dim \mathcal{Y}}_{\tilde{\mathcal{Y}}} \cong K_{\tilde{Y}_m}$ separate generic points of \tilde{Y}_m .

- 1.5. We explain now how we can obtain the following refinement of Xu's theorem 0.3 in the case of hypersurfaces; of course, only the case where d = n + 2 is to be considered, since the case d > n + 2 is covered by Ein's theorem.
- **1.6 Theorem**, Let $X \subset \mathbb{P}^n$ be a general hypersurface of degree d = n + 2. Then for any irreducible divisor $Y \subset X$, any desingularization \tilde{Y} of X satisfies that the canonical map of \tilde{Y} is generically finite on its image.

We consider again $\mathcal{X} \subset \mathbb{P}^n \times S^{d^0}$, the universal hypersurface, and $X_t \subset \mathcal{X}$ a fiber of pr_2 ; we have shown that $T\mathcal{X}(1)_{|X_t}$ is generated by the global sections, hence gives a map:

1.6.1. $\phi: \mathbb{P}(\Omega_{\mathcal{X}}(-1)|_{X_t}) \to \mathbb{P}^M$.

The proof of the Theorem 1.6 will follow from

1.7 Proposition. On the set of GL(n+1)-invariant hyperplanes of $T\mathcal{X}(1)_{|X_t}$, the positive dimensional fibers of ϕ project onto lines contained in X.

Here we consider the natural action of GL(n+1) on

$$\mathcal{X} \subset \mathbb{P}^n \times S^{d^0}$$
.

The GL(n + 1)-invariant hyperplanes are those which contain the tangent vectors to this action.

- **1.8.** Let us explain how 1.7 implies 1.6: it suffices to show that for any étale map $\mathcal{M} \to S^{d^0}$, with a lifting of the GL(n+1) action, and any GL(n+1)-invariant divisor $\mathcal{Y} \subset \mathcal{X}_{\mathcal{M}}$, ($\mathcal{X}_{\mathcal{M}}$ is the family obtained by base change to \mathcal{M}), any desingularization $\tilde{\mathcal{Y}}$ of \mathcal{Y} satisfies:
- **1.8.1.** The sections of $K_{\tilde{\mathcal{Y}}|\tilde{Y}_t} \cong K_{\tilde{Y}_t}$ give a map $\tilde{Y}_t \cdots > \mathbb{P}^{M'}$ generically finite on its image, for generic $t \in \mathcal{M}$.

Now, at a point y where $\tilde{\mathcal{Y}} \to \mathcal{X}_{\mathcal{M}}$ is an immersion, $T\tilde{\mathcal{Y}}_{|y} \subset T\mathcal{X}_{\mathcal{M}|y}$ is a GL(n+1)-invariant hyperplane. Let $t \in \mathcal{M}$ be generic, and x, y two points of \tilde{Y}_t , where $\tilde{\mathcal{Y}} \to \mathcal{X}_{\mathcal{M}}$ is an immersion. If $T\tilde{\mathcal{Y}}_{|x}$, $T\tilde{\mathcal{Y}}_{|y}$ are not in the same fiber of ϕ , then there is a section of $T\mathcal{X}(1)_{|X_t} \cong \Omega_{\mathcal{X}}^{N+n-2}_{|X_t}$ (since d = n+2), which vanishes on $T\tilde{\mathcal{Y}}_{|x}$ but not on $T\tilde{\mathcal{Y}}_{|y}$. In other

words, the fibers of the map $\psi: \tilde{Y}_t \cdots > \mathbb{P}^{M^n}$ given by the image of $H^0(\Omega^{N+n-2}_{\chi})$ in $H^0(\Omega^{N+n-2}_{\tilde{\mathcal{Y}}}) \cong H^0(K_{\tilde{Y}_t})$ are contained over an open set of \tilde{Y}_t in the projection of fibers of ϕ .

So the positive dimensional fibers of ψ , over an open set of \tilde{Y}_t must be lines contained in X_t by 1.7. But if t is generic, the family of lines in X_t has dimension n-5, so lines in X_t cannot cover a divisor of X_t , which proves that ψ is generically finite on its image.

1.9 Proof of Proposition 1.7. Recall from 1.1.2,1.1.6 the isomorphism: $H^0(T\mathcal{X}(1)_{|X_t})\cong \operatorname{Ker}\mu$, where $\mu:S^d\otimes S^1\to R_t^{d+1}$ is the multiplication $\mu_0:S^d\otimes S^1\to H^0(\mathcal{O}_{X_t}(d+1))$ followed by the projection $H^0(\mathcal{O}_{X_t}(d+1))\to R_t^{d+1}:=S^{d+1}/J_t^{d+1}$, where J_t is the jacobian ideal of the defining equation F_t of X_t . Let now $H\subset \operatorname{Ker}\mu$ be a hyperplane and let $K\subset S^d\otimes S^1$ be a hyperplane such that $K\cap \operatorname{Ker}\mu=H$. A point $x\in X_t$ is in the projection of $\phi^{-1}(H)$ iff the evaluation map $H\to T\mathcal{X}(1)_{|x}$ is not surjective. Let $K_x:=K\cap S^d\otimes S_x^1$. Notice that there is at most one point x such that $K_x=S^d\otimes S_x^1$, so we may assume that K_x is a hyperplane of $S^d\otimes S_x^1$, since we are interested in the description of the positive dimensional fibers of ϕ . Using the notation of the proof of 1.1, we have the following exact diagramm: 1.9.2.

Under the above assumption, $K_x \subset K$ has codimension equal to $N := \dim S^d$. It is easy to see that the map μ is surjective, so we conclude from 1.9.2 that

$$H^0(T\mathcal{X}(1)_{|X_t}\otimes \mathcal{I}_x)\cap H\subset H$$

has codimension equal to $\operatorname{rank}(T\mathcal{X}(1))$ when μ_x is surjective. On the other hand, since K_x is a hyperplane in $S^d \otimes S^1_x$, μ_x will be surjective if K_x does not contain $\operatorname{Ker}(\mu_0^x: S^d \otimes S^1_x \to H^0(\mathcal{O}_{X_t}(d+1) \otimes \mathcal{I}_x))$. Thus the projection to X_t of the fiber $\phi^{-1}(H)$ is contained in the set $\{x/\operatorname{Ker}\mu_0^x \subset K_x\}$, with one eventual supplementary point where $K_x = S^d \otimes S^1_x$.

Now suppose that H contains $\operatorname{Ker} \mu_0$: Using the exact sequence:

1.9.3. $0 \to T\mathcal{X}_{|X_t} \to T\mathbb{P}^n_{|X_t} \oplus S^d \otimes \mathcal{O}_{X_t} \stackrel{dF}{\to} \mathcal{O}_{X_t}(d) \to 0$, where $dF((u,g))(x) = {}_uF_t(x) + g(x)$, one sees easily that $T\mathcal{X}_{|X_t}$ contains the bundle $M_{d|X_t}$, where M_d is defined by the exact sequence:

1.9.4.
$$0 \to M_d \to S^d \otimes \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(d) \to 0.$$

Furthermore one checks readily that $\operatorname{Ker} \mu_0 \subset \operatorname{Ker} \mu$ identifies with the inclusion $H^0(M_d(1)_{X_t}) \subset H^0(T\mathcal{X}(1)_{|X_t})$ and that $M_d(1)$ is generated by global sections. So, if H contains $\operatorname{Ker} \mu_0$, then $\phi^{-1}(H)$ corresponds to hyperplanes V_x in $T\mathcal{X}(1)_x, x \in X_t$ such that $M_{d|x} \subset V_x$. But it is easy to see that $M_{d|x}$ together with the vectors tangent to the infinitesimal action of GL(n+1) generate $T\mathcal{X}(1)_x$, so $\phi^{-1}(H)$ cannot contain a GL(n+1)-invariant hyperplane, when H contains $\operatorname{Ker} \mu_0$.

Finally, assume that $\operatorname{Ker} \mu_0 \not\subset H$; then we have:

1.9.5 Lemma. The set $\{x \in X_t / \operatorname{Ker} \mu_0^x \subset K_x\}$ is contained in a line.

This is elementary: it suffices to note that if x, y, z are three non-colinear points of X_t , then $\operatorname{Ker} \mu_0^x$, $\operatorname{Ker} \mu_0^y$, $\operatorname{Ker} \mu_0^z$ generate $\operatorname{Ker} \mu_0$.

- **1.10.** As in [9], from 1.3 we can also deduce information about the Chow groups $CH_0(X_t)$ for general X_t . In fact, let $\mathcal{M} \subset \Pi_i S^{d_i^0}$ be a subvariety, as in 1.4; then 1.3 gives us:
- **1.10.1.** For $\sum_{i} d_{i} > 2n k + 1 + \operatorname{codim} \mathcal{M}$, the bundle $\Omega^{\dim \mathcal{M}}_{\mathcal{X}_{\tilde{\mathcal{M}}}}|_{X_{m}}$ is very ample, for any $m \in \mathcal{M}$.

Now we conclude:

1.11 Theorem. For $\sum_i d_i > 2n - k + 1 + \operatorname{codim} \mathcal{M}$, no two distinct points of X_m are rationally equivalent, if m is a general point of \mathcal{M} .

We recall from [9] how 1.11 is deduced from 1.10.1: if 1.11 is not true, then there is an étale cover $\tilde{\mathcal{M}}$ of an open set of the smooth part of \mathcal{M} , and two distinct sections $\sigma, \tau: \tilde{\mathcal{M}} \to \mathcal{X}_{\tilde{\mathcal{M}}}$ such that for $m \in \tilde{\mathcal{M}}, \sigma(m)$ is rationally equivalent to $\tau(m)$ in the fiber X_m . The cycle $Z = \sigma(\tilde{\mathcal{M}}) - \tau(\tilde{\mathcal{M}})$ is of codimension n-k in $\mathcal{X}_{\tilde{\mathcal{M}}}$, and the assumption implies that a multiple of it is rationally equivalent to a cycle supported over a proper subset of $\tilde{\mathcal{M}}$. It follows that its class $[Z] \in H^{n-k}(\Omega^{n-k}_{\mathcal{X}_{\tilde{\mathcal{M}}}})$ vanishes in $H^0(R^{n-k}pr_{2*}\Omega^{n-k}_{\mathcal{X}_{\tilde{\mathcal{M}}}})$ over an open set of $\tilde{\mathcal{M}}$. On the other hand, for $m \in \tilde{\mathcal{M}}, H^{n-k}(X_m, \Omega^{n-k}_{\mathcal{X}_{\tilde{\mathcal{M}}}|X_m})$ is dual of $H^0(X_m, \Omega^{\dim \tilde{\mathcal{M}}}_{\mathcal{X}_{\tilde{\mathcal{M}}}} \otimes K_{\tilde{\mathcal{M}}}^{-1})$ by Serre duality, and one checks the following:(see [9])

1.11.1. The class $(\alpha_Z)_m \in \operatorname{Hom}(H^0(X_m, \Omega^{\dim \tilde{\mathcal{M}}}_{\mathcal{X}_{\tilde{\mathcal{M}}} | X_m}), K_{\tilde{\mathcal{M}}, m})$ obtained as the image of [Z] by the composite:

$$\begin{split} H^{n-k}(\Omega^{n-k}_{\mathcal{X}_{\tilde{\mathcal{M}}}}) &\to H^{n-k}(X_m, \Omega^{n-k}_{\mathcal{X}_{\tilde{\mathcal{M}}}}|_{X_m}) \cong (H^0(X_m, \Omega^{\dim \tilde{\mathcal{M}}}_{\mathcal{X}_{\tilde{\mathcal{M}}}}|_{X_m} \otimes K_{\tilde{\mathcal{M}}}^{-1}))^* \\ &\cong \operatorname{Hom}(H^0(X_m, \Omega^{\dim \tilde{\mathcal{M}}}_{\mathcal{X}_{\tilde{\mathcal{M}}}}|_{X_m}), K_{\tilde{\mathcal{M}},_m}) \end{split}$$

is equal to $\sigma^* - \tau^*$.

Here σ^* , τ^* are the pull-back maps of holomorphic forms by the sections σ , τ : $\tilde{\mathcal{M}} \to \mathcal{X}_{\tilde{\mathcal{M}}}$. Now this is finished since by 1.10.1, $\Omega_{\tilde{\mathcal{X}}_{\tilde{\mathcal{M}}} = |X_{\infty}|}^{\dim \mathcal{M}}$

is very ample, when $\sum_i d_i > 2n - k + 1 + \operatorname{codim} \mathcal{M}$, which implies immediately that for $\sigma(m) \neq \tau(m)$, the map $\sigma^* - \tau^*$ cannot be zero at m, in contradiction with $(\alpha_Z)_m = 0$.

- 2. In this section we will consider the case where k=1, that is hypersurfaces of degree d in \mathbb{P}^n . Let $\mathcal{X} \subset \mathbb{P}^n \times (S^d)^0$ be the universal hypersurface; the main point in the previous section was to get the global generation of $\bigwedge^l T\mathcal{X}(l)_{|X_t}$, using global sections of $T\mathcal{X}(1)_{|X_t}$. I do not know the answer to the following question:
- **2.1 Question.** When is $\bigwedge^2 T\mathcal{X}(1)_{|X_t}$ generated by global sections, at least for generic t?

(This should be true when K_X is ample.)

However, for our applications, the following proposition will suffice to improve the results of Section 1: view $H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t})$ as a space of sections of a certain line bundle over the grassmannian of codimension-two subspaces of $T\mathcal{X}(1)_{|X_t}$. Assume $n \geq 4$ and $K_X \geq \mathcal{O}_X(1)$; then we have:

2.2 Proposition. For generic t, $H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t})$ has no base point on the set of GL(n+1)-invariant codimension-two subspaces of $T\mathcal{X}_{|X_t}$. Here we are considering the natural action of GL(n+1) on

$$\mathcal{X} \subset \mathbb{P}^n \times S^d : g(x, F) = (g(x), (g^{-1})^*(F));$$

by invariant subspace, we mean subspaces containing the vectors tangent to the orbits of GL(n+1).

Proof. Consider the inclusion $j: \mathcal{X} \hookrightarrow \mathbb{P}^n \times S^d$; it gives the exact sequence:

2.2.1. $0 \to T\mathcal{X}_{|X_t} \to T\mathbb{P}^n_{|X_t} \oplus S^d \otimes \mathcal{O}_{X_t} \stackrel{df}{\to} \mathcal{O}_{X_t}(d) \to 0$, where $dF((u,H))_{(x)} = dF_{t(x)}(u) + H(x)$ if F_t is the equation of X_t in \mathbb{P}^n . Let M_d be the bundle on \mathbb{P}^n defined by the exact sequence:

2.2.2. $0 \to M_d \to S^d \otimes \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(d) \to 0.$

From 2.2.2, we get an inclusion $M_{d|X_t} \subset T\mathcal{X}_{|X_t}$ and an exact sequence:

2.2.3. $0 \to M_{d|X_t} \to T\mathcal{X}_{|X_t} \to T\mathbb{P}^n_{|X_t} \to 0.$

In particular, we obtain an inclusion:

2.2.4. $H^0(\bigwedge^2 M_d(1)_{|X_t}) \subset H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t}).$

Now we have the following lemma:

2.3 Lemma. $H^0(\bigwedge^2 M_d(1))$, viewed as a set of sections of a certain line bundle on the grassmannian of codimension-two subspaces of the bundle M_d , has for base points the set $\{(x,T), x \in \mathbb{P}^n, T \subset M_{d(x)}, \text{such that } T \text{ contains the ideal of a line } \Delta \text{ through } x\}$.

Proof. The exact sequence defining M_d gives an isomorphism: $H^0(\bigwedge^2 M_d(1)) \cong \operatorname{Ker} \mu'$, where $\mu' : \bigwedge^2 S^d \otimes S^1 \to S^d \otimes S^{d+1}$ is the Koszul map defined by: $\mu'((P \wedge Q) \otimes A) = P \otimes AQ - Q \otimes AP$. Now $\operatorname{Ker} \mu'$

contains the elements: $PA \wedge PB \otimes C - PA \wedge PC \otimes B + PB \wedge PC \otimes A$, for $P \in S^{d-1}$, $A, B, C \in S^1$. It follows that the image of the restriction map: $H^0(\bigwedge^2 M_d(1)) \to \bigwedge^2 M_d(1)_{|x} \subset \bigwedge^2 S^d$ contains the elements $PA \wedge PB$, for $P \in S^{d-1}$, $A, B \in S^1_x$, where $S^1_x := H^0(\mathcal{O}_{\mathbb{P}^n}(1) \otimes \mathcal{I}_x)$. Let $T \subset M_{d,x} := H^0(\mathcal{O}_{\mathbb{P}^n}(d) \otimes \mathcal{I}_x)$ be of codimension two, and suppose $H^0(\bigwedge^2 M_d(1))$ vanishes on it. Then for any $P \in S^{d-1}$, $[T:P]_x := \{A \in S^1_x / PA \in T\}$ must be an hyperplane, that is, the map $m_P : S^1_x \to S^d_x / T$ of multiplication by P is not surjective. If $[T:P]_x = S^1_x$ for generic P, then $T = S^d_x$, which is not true; otherwise m_P has generic rank one. Differentiating this condition at a generic point $P \in S^{d-1}$, we find $[T:P]_x \cdot S^{d-1} \subset T$, so 2.3 is proved since $[T:P]_x$ is the component of degree 1 of the ideal of a line Δ containing x. The converse follows from the fact that if T contains the ideal of a line Δ containing x, the composite map:

2.3.1. $H^0(\bigwedge^2 M_d(1)) \to \bigwedge^2 M_d(1)_{|x} \to \bigwedge^2 (M_{d|x}/T)$ factors through the restriction map:

2.3.2. $H^{\bar{0}}(\bigwedge^2 M_d(1)) \to H^0(\bigwedge^{\bar{2}} M_d^{\Delta}(1)),$ where M_d^{Δ} is defined by the exact sequence:

2.3.3. $0 \to M_d^{\Delta} \to H^0(\mathcal{O}_{\Delta}(d)) \to \mathcal{O}_{\Delta}(d) \to 0.$

Now it is easy to see that $H^0(\bigwedge^2 M_d^{\Delta}(1)) = \{0\}.$

From 2.3 and 2.2.3, 2.2.4, we conclude immediately:

2.4 fact. Let $V \subset T\mathcal{X}_{|x}$ be a codimension-two subspace which is a base point of $H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t})$. Then $V \cap M_{d|x}$ must be a hyperplane of $M_{d|x}$ or must contain the ideal of a line Δ containing x.

To deal with the first case, we show:

2.5 Lemma. Let P be the quotient $\bigwedge^2 T\mathcal{X}(1)_{|X_t} / \bigwedge^2 M_d(1)_{|X_t}$. Then the map $H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t})) \to H^0(P)$ is surjective, and P is generated by global sections.

Proof. The first assertion comes from the vanishing:(see[6])

2.5.1. $H^1(\bigwedge^2 M_d(1)_{|X_t}) = \{0\}.$

In fact consider the exact sequence:

2.5.2. $0 \to \bigwedge^2 M_d(1)_{|X_t} \to \bigwedge^2 S^d \otimes \mathcal{O}_{X_t}(1) \to M_d \otimes \mathcal{O}_{X_t}(d+1) \to 0.$ It follows that:

2.5.3.

$$H^1(\bigwedge^2 M_d(1)_{|X_t}) = H^0(M_d \otimes \mathcal{O}_{X_t}(d+1)) / \operatorname{Im}(\bigwedge^2 S^d \otimes S^1),$$

and this is equal to

$$\operatorname{Ker}(S^d \otimes H^0(\mathcal{O}_{X_t}(d+1)) \to H^0(\mathcal{O}_{X_t}(2d+1))) / \operatorname{Im}(\bigwedge^2 S^d \otimes S^1).$$

But it is shown by M. Green in [6] that the following sequence is exact at the middle:

2.5.4. $\bigwedge^2 S^d \otimes S^1 \to S^d \otimes S^{d+1} \to S^{2d+1}$,

where the first map is the Koszul map μ' of 2.3. Since $\operatorname{Ker}(S^d \otimes S^{d+1} \to S^{2d+1})$ surjects onto $\operatorname{Ker}(S^d \otimes H^0(\mathcal{O}_{X_t}(d+1)) \to H^0(\mathcal{O}_{X_t}(2d+1)))$, we conclude immediately, as in [5], that 2.5.4 remains exact after restriction to X_t , that is, by 2.5.3, that $H^1(\bigwedge^2 M_d(1)|_{X_t}) = \{0\}$.

As for the first statement, we have an exact sequence:

2.5.5.
$$0 \to M_d \otimes T\mathbb{P}^n(1)_{|X_t|} \to P \to \bigwedge^2 T\mathbb{P}^n(1)_{|X_t|} \to 0.$$

Again $H^1(M_d \otimes T\mathbb{P}^n(1)|_{X_t}) = \{0\}$ by the exact sequence:

2.5.6.

$$0 \to M_d \otimes T\mathbb{P}^n(1)_{|X_t} \to S^d \otimes T\mathbb{P}^n(1)_{|X_t} \to T\mathbb{P}^n(d+1)_{|X_t} \to 0,$$

the equality $H^1(T\mathbb{P}^n(1)_{|X_t}) = \{0\}$ $(n \geq 4)$, and the fact that $H^0(T\mathbb{P}^n(d+1)_{|X_t})$ is generated by $H^0(T\mathbb{P}^n(1)_{|X_t})$.

Finally $\bigwedge^2 T\mathbb{P}^n(1)_{|X_t}$ is generated by global sections, as is $M_d \otimes T\mathbb{P}^n(1)_{|X_t}$, which follows from the Euler sequence and the fact that $M_d(2)$ is generated by global sections. This last fact is seen as follows: we have $H^0(M_d(2)) = \operatorname{Ker}(S^d \otimes S^2 \xrightarrow{mult} S^{d+2})$; this contains the elements $PA \otimes B - PB \otimes A$, for $P \in S^{d-2}$, $A, B \in S^2$. Evaluating these elements in $M_d(2)_{|x}$, we get for $A(x) = 0, B(x) \neq 0$ the elements $PA, A(x) = 0, P \in S^{d-2}$, of $M_d(2)_x = H^0(\mathcal{O}_{\mathbb{P}^n}(d) \otimes \mathcal{I}_x)$. Clearly, they generate $H^0(\mathcal{O}_{\mathbb{P}^n}(d) \otimes \mathcal{I}_x)$.

Now 2.4 and 2.5 show:

2.6 Corollary. If $V \subset T\mathcal{X}_{|x}$ is a codimension-two subspace which is a base point of $H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t})$, then $V \cap M_{d|x}$ must contain the ideal of a line Δ containing x.

Indeed, if $V \cap M_{d|x}$ is a hyperplane of $M_{d|x}$, the map

$$H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t}) \to \bigwedge^2 (T\mathcal{X}_{|x}/V)$$

factors through the map: $H^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t}) \to P_x$ which is surjective by 2.5.

- **2.7.** To finish the proof of Proposition 2.2, we now specialize to the case of the Fermat variety X defined by the equation $F = \sum_i X_i^d = 0$. We may do it because of the following lemma:
 - **2.7.1 Lemma.** $h^0(\bigwedge^2 T\mathcal{X}(1)_{|X_t})$ is independent of $t \in S^{d^0}$.

Proof. Using the exact sequence (see 2.5) defining P:

$$0 \to \bigwedge^2 M_d(1)_{|X_t} \to \bigwedge^2 T\mathcal{X}(1)_{|X_t} \to P \to 0,$$

and 2.5.1, it suffices to prove that $h^0(\bigwedge^2 M_d(1)|_{X_t})$ and $h^0(P)$ are independent of $t \in S^{d^0}$. For the first one, this comes from the exact sequence (see 2.5.2, 2.5.4)

2.7.2.

$$0 \to H^0(\bigwedge^2 M_d(1)_{|X_t}) \to \bigwedge^2 S^d \otimes H^0(\mathcal{O}_{X_t}(1))$$

$$\to S^d \otimes H^0(\mathcal{O}_{X_t}(d+1)) \to H^0(\mathcal{O}_{X_t}(2d+1)) \to 0,$$

where all spaces, starting from the second one have constant rank. For the second one, this follows from the exact sequence 2.5.4, with $H^1(M_d \otimes T\mathbb{P}^n(1)_{|X_t}) = \{0\}$. So it suffices to know that $H^0(M_d \otimes T\mathbb{P}^n(1)_{|X_t})$ and $H^0(\bigwedge^2 T\mathbb{P}^n(1)_{|X_t})$ have ranks independent of t. But this is immediate for the second one by Bott vanishing theorem, and for the first one by the exact sequence:

2.7.3.

$$0 \to H^0(M_d \otimes T\mathbb{P}^n(1)_{|X_t}) \to S^d \otimes h^0(T\mathbb{P}^n(1)_{|X_t})$$

$$\to H^0(T\mathbb{P}^n(d+1)_{|X_t}) \to 0,$$

where all terms starting from the second one have constant rank by Bott vanishing theorem.

- **2.8.** So let X be the Fermat variety, $x \in X$ and $V \subset T\mathcal{X}_{|x}$ be a codimension-two subspace, which is a base point of $H^0(\bigwedge^2 T\mathcal{X}(1)_{|X})$, and is invariant under the infinitesimal action of GL(n+1), which means that it contains:
- **2.8.1.** $J_x := \{(u(x), -_{\bar{u}}F)\} \subset T\mathcal{X}_{|x} \subset T\mathbb{P}^n_{|x} \times S^d,$ where $u \in H^0(T\mathbb{P}^n)$, and \tilde{u} is a lifting of u in the Lie algebra of GL(n+1), so $\tilde{u} = \sum_i A_i \partial/\partial X_i, A_i \in H^0(\mathcal{O}_{\mathbb{P}^n}(1))$ and $_{\bar{u}}F = \sum_i A_i \partial F/\partial X_i.$

We know by 2.6 that V contains the ideal of a line Δ containing x: $I_{\Delta}(d) \subset M_{d|x} \subset T\mathcal{X}_{|x}$. Let $T\mathcal{X}_{|x}^{\Delta} := T\mathcal{X}_{|x}/I_{\Delta}(d)$, and let J_x^{Δ} be the image of J_x in $T\mathcal{X}_{|x}^{\Delta}$. Since V contains J_x and $I_{\Delta}(d)$, the map:

$$H^0(\bigwedge^2 T\mathcal{X}(1)_{|X}) \to H^0(\bigwedge^2 T\mathcal{X}(1)_{|x}) \to \bigwedge^2 (T\mathcal{X}/V)$$

factors through the map:

2.8.2. $\beta : H^0(\bigwedge^2 T \mathcal{X}(1)_{|X}) \to \bigwedge^2 (T \mathcal{X}_{|x}^{\Delta}/J_x^{\Delta}),$ and it suffices to show that β is surjective, to conclude that V cannot be a base point of $H^0(\bigwedge^2 T \mathcal{X}(1)_{|X}).$

Now we do the following: We can choose two coordinates X_i, X_j , which give independent coordinates on Δ ; also, we may assume that not all coordinates $X_k, k \neq i, j$ vanish at x, because there are at least two nonvanishing coordinates at any $x \in X$. Let $A_{\lambda} := X_i - \lambda X_j$, for

 $\lambda \in \mathcal{C}$ and let $P_{\lambda} := (X_i^{d-1} - \lambda^{d-1} X_j^{d-1})/(X_i - \lambda X_j) \in S^{d-2}$. Recall from 1.1.2, 1.1.6 the isomorphism:

- **2.8.3.** $H^0(T\mathcal{X}(1)_{|X})\cong \mathrm{Ker}(\mu:S^d\otimes S^1\to R^{d+1});$ it follows that for any $T\in S^2$:
 - **2.8.4.** $TP_{\lambda} \otimes A_{\lambda} \in H^0(T\mathcal{X}(1)_{|X})$, since

$$TP_{\lambda} \cdot A_{\lambda} = T(X_i^{d-1} - \lambda^{d-1}X_i^{d-1}) \in J(F).$$

Now we have:

2.8.5. $TP_{\lambda} \otimes A_{\lambda} \wedge SP_{\lambda} \otimes A_{\lambda} \in H^{0}(\bigwedge^{2} TX(2)_{|X})$ vanishes on $\{A_{\lambda} = 0\}$ for any $T, S \in S^{2}$.

To see this, note that along $\{A_{\lambda} = 0\}$, $TP_{\lambda} \otimes A_{\lambda}$ gives a vertical vector, that is an element of $TX \subset T\mathcal{X}$, since in the exact sequence:

2.8.6. $0 \to TX_{|y} \to T\mathcal{X}_{|y} \xrightarrow{\pi} S^d \to 0$, one has $\pi(TP_{\lambda} \otimes A_{\lambda}) = TP_{\lambda} \cdot A_{\lambda}(y)$, which vanishes when $A_{\lambda}(y) = 0$. This vertical vector is easy to compute, retracing through the construction of the isomorphism: $H^0(T\mathcal{X}(1)_{|X}) \cong \operatorname{Ker}(\mu)$; in fact we have $TP_{\lambda} \cdot A_{\lambda} = T(X_i^{d-1} - \lambda^{d-1}X_j^{d-1})$ in S^{d+1} , and this is equal to

$$(1/d)T(\partial F/\partial X_i - \lambda^{d-1}\partial F/\partial X_i).$$

Then we have the following:

2.8.7. For $A_{\lambda}(y) = 0$, one has

$$(TP_{\lambda} \otimes A_{\lambda})_{y} = (1/d)T(y)(\partial/\partial X_{i} - \lambda^{d-1}\partial/\partial X_{j})$$

$$\in TX(1)_{|y} \subset T\mathbb{P}^{n}(1)_{|y}.$$

So clearly $TP_{\lambda} \otimes A_{\lambda}$ and $SP_{\lambda} \otimes A_{\lambda}$ are proportional along $\{A_{\lambda} = 0\}$, which proves 2.8.5.

It follows that, after dividing by A_{λ} , we get a section $(TP_{\lambda} \otimes A_{\lambda} \wedge SP_{\lambda} \otimes A_{\lambda})/A_{\lambda}$ of $\bigwedge^2 T\mathcal{X}(1)_{|X}$. Clearly, if $W \subset T\mathcal{X}_{|x}$ is the subspace generated by the $TP_{\lambda} \otimes A_{\lambda}$, when T and λ vary, the sections $(TP_{\lambda} \otimes A_{\lambda} \wedge SP_{\lambda} \otimes A_{\lambda})/A_{\lambda}$ generate the subspace $\bigwedge^2 W(1) \subset \bigwedge^2 T\mathcal{X}(1)_{|x}$ since for generic $\lambda, A_{\lambda}(x) \neq 0$ (we have assumed that X_i, X_j are independent on Δ).

So, to show that β (2.8.2) is surjective, it suffices to show:

2.8.8. The composite map: $W \hookrightarrow T\mathcal{X}_{|x} \to T\mathcal{X}_{|x}^{\Delta}/J_x^{\Delta}$ is surjective, or equivalently:

2.8.9. $W_{\Delta} + J_x^{\Delta} = T \mathcal{X}_{|x}^{\Delta}$, where W_{Δ} is the projection of W in $T \mathcal{X}_{|x}^{\Delta}$.

But W(1), viewed as a subspace of $T\mathbb{P}^n(1)_{|x} \oplus S^d \otimes \mathcal{O}_x(1)$ is generated by the elements $(-(1/d)T(x)(\partial/\partial X_i - \lambda^{d-1}\partial/\partial X_j, TP_\lambda \cdot A_\lambda(x))$, for $\lambda \in \mathcal{C}, T \in S^2$, with $P_\lambda := (X_i^{d-1} - \lambda^{d-1}X_j^{d-1})/(X_i - \lambda X_j)$. Clearly, when λ, T move, the restrictions to Δ of the elements $TP_\lambda \cdot A_\lambda(x)$ generate

 $H^0(\mathcal{O}_{\Delta}(d))$, since X_i, X_j are independent on Δ . Finally the kernel of the projection $W_{\Delta} \to H^0(\mathcal{O}_{\Delta}(d))$ is generated by the vertical vector $(1/d)T(x)(\partial/\partial X_i - \lambda^{d-1}\partial/\partial X_j)$ for $T(x) \neq 0$ and $A_{\lambda}(x) = 0$. It follows that, as a subspace of $T\mathbb{P}^n(1)_{|x} \oplus H^0(\mathcal{O}_{\Delta}(d)) \otimes \mathcal{O}_x(1)$, W_{Δ} is equal to:

2.8.10. $\{(u,g), u \in \langle \partial/\partial X_i, \partial/\partial X_j \rangle \otimes \mathcal{O}_x(2)/dF(u) + g(x) = 0\}$. So W_{Δ} is of codimension n-2 in $T\mathcal{X}(1)_{|x}$, since $\partial/\partial X_i$, $\partial/\partial X_j$ are independent in $T\mathbb{P}^n(-1)_{|x}$. To prove that $W_{\Delta} + J_x^{\Delta} = T\mathcal{X}_{|x}^{\Delta}$, it suffices to verify that $J_x^{\Delta} \cap W_{\Delta}$ is of codimension n-2 in J_x^{Δ} .

But by 2.8.1 and 2.8.10, we find:

2.8.11.

$$J_x^{\Delta} \cap W_{\Delta} = \{(u(x), -_{\bar{u}}F)/u(x) \in \langle \partial/\partial X_i, \partial/\partial X_j \rangle \otimes \mathcal{O}_x(2)\},\$$

where the equality holds in $T\mathcal{X}(1)_{|x} \subset T\mathbb{P}^n(1)_{|x} \oplus H^0(\mathcal{O}_{\Delta}(d)) \otimes \mathcal{O}_x(1)$, and this is clearly of codimension n-2 in J_x^{Δ} , since the projection $J_x^{\Delta} \to T\mathbb{P}^n_{|x}$ is surjective, and $\partial/\partial X_i$, $\partial/\partial X_j$ are independent in $T\mathbb{P}^n(-1)_{|x}$ (this follows from the assumption that not all coordinates X_k , $k \neq i, j$ vanish at x). So the proof of Proposition 2.2 is finished.

- **2.9.** Although it should be clear from the reasoning in the proof of Theorem 1.4, we repeat the argument which gives the next result:
- **2.10 Theorem.** Let $d \geq 2n l 1$, $1 \leq l \leq n 3$; then for $X \subset \mathbb{P}^n$ general of degree d and $Y \subset X$ a subvariety of dimension l, $K_{\tilde{Y}}$ is effective, where \tilde{Y} is any desingularization of Y. If the inequality is strict, the canonical map of \tilde{Y} is of degree one on its image.

Proof. It suffices to show that for any étale map $\mathcal{M} \to (S^d)^0$, and for any GL(n+1)-invariant subvariety $\mathcal{Y} \subset \mathcal{X}_{\mathcal{M}}$ dominating \mathcal{M} , with generic fiber dimension l, if $\tilde{\mathcal{Y}}$ is a desingularization of \mathcal{Y} , $H^0(K_{\tilde{\mathcal{Y}}|\tilde{Y}_t}) \neq 0$, (resp. $H^0(K_{\tilde{\mathcal{Y}}|\tilde{Y}_t})$ separates the points of an open set of \tilde{Y}_t when the inequality is strict), for t generic in \mathcal{M} .

But for t generic in \mathcal{M} and y generic in Y_t , \mathcal{Y} is smooth at y and $T\mathcal{Y}_{|y} \subset T\mathcal{X}_{\mathcal{M}|y}$ is a space of codimension n-1-l, invariant under GL(n+1). Now we have by Proposition 1.1 that $T\mathcal{X}_{\mathcal{M}}(1)_{|X_t}$ is generated by global sections, and by Proposition 2.2 that $H^0(\bigwedge^2 T\mathcal{X}_{\mathcal{M}}(1)_{|X_t})$ has no base point on the set of GL(n+1)-invariant codimension two subspaces of $T\mathcal{X}_{\mathcal{M}}(1)_{|X_t}$ for t generic in \mathcal{M} . Let y be generic in Y_t as above and let $\sigma_{l+1}, \ldots, \sigma_{n-3}$ be sections of $T\mathcal{X}_{\mathcal{M}}(1)_{|X_t}$, such that $\langle T\mathcal{Y}_{|y}, (\sigma_i)_{1=l,\ldots,n-3} \rangle$ is a codimension two GL(n+1)-invariant subspace V of $T\mathcal{X}_{\mathcal{M}}(1)_{|y}$; there exists $\omega \in H^0(\bigwedge^2 T\mathcal{X}_{\mathcal{M}}(1)_{|X_t})$ which does not vanish on V; now

$$\omega(V) = \omega \wedge \sigma_l \wedge \ldots \wedge \sigma_{n-3}(T\mathcal{Y}_{|y}),$$

and $\omega \wedge \sigma_l \wedge \ldots \wedge \sigma_{n-3}$ is a section of

$$\bigwedge^{n-1-l} T\mathcal{X}_{\mathcal{M}}(n-2-l)_{|X_t}) \cong \Omega^{N+l}_{\mathcal{X}_{\mathcal{M}}|X_t}(n-2-l-K_{X_t}).$$

So if $K_{X_t} \geq \mathcal{O}_{X_t}(n-2-l)$, that is, when $d \geq 2n-l-1$, there is a section of $\Omega^{N+l}_{\mathcal{X}_M\mid X_t}$ which does not vanish in $\Omega^{N+l}_{\tilde{\mathcal{Y}}\mid \tilde{Y}_t} \cong K_{\tilde{\mathcal{Y}}\mid \tilde{Y}_t}$. Similarly, if the inequality is strict, there is a section of $\Omega^{N+l}_{\mathcal{X}_M\mid X_t}(-1)$ which does not vanish in $\Omega^{N+l}_{\tilde{\mathcal{Y}}\mid \tilde{Y}_t}(-1) \cong K_{\tilde{\mathcal{Y}}\mid \tilde{Y}_t}(-1)$; hence the canonical map of \tilde{Y}_t is of degree one on its image in this case.

References

- M. Chang & Z. Ran, Divisors on some generic hypersurfaces, J. Differential Geom. 38 (1993) 671-678.
- [2] H. Clemens, Curves in generic hypersurfaces, Ann. Sci. École Norm. Sup. 19 (1986) 629-636.
- [3] L. Ein, Subvarieties of generic complete intersections, Invent. Math. 94 (1988) 163-169.
- [4] _____, Subvarieties of generic complete intersections. II, Math. Ann. 289 (1991) 465-471.
- [5] R. Donagi & M. Green, A new proof of the symmetrizer lemma and a stronger weak Torelli theorem, J. Differential Geom. 20 (1984) 459-461.
- [6] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 20 (1984) 279-289.
- [7] A. Lopez & G-P. Pirola, On the curves through a general point of a smooth surface in \mathbb{P}^3 , Preprint, 1993.
- [8] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Invent. Math. 111 (2) (1993) 349-373.
- [9] C. Voisin, Variations de structure de Hodge et zéro-cycles sur les surfaces générales, Math. Ann. 299 (1994) 77-103.
- [10] _____, Une remarque sur l'invariant infinitésimal des fonctions normales, C. R. Acad. Sci. Paris Série I, 307 (1988) 157-160.
- [11] G. Xu, Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39 (1994) 139-172.
- [12] _____, Divisors on generic complete intersections in projective space, Preprint, 1994.

Université d'Orsay, URA 1169 du CNRS